Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*E*)-1-{6-[1-(2,6-Dimethylphenylimino)ethyl]pyridin-2-yl}ethanone

Qing Su^a and Qing Zhao^{b*}

^aSchool of Chemistry, Jilin University, Changchun 130012, People's Republic of China, and ^bDepartment of Neurology, China-Japan Union Hospital, Jilin University, Changchun 130033, People's Republic of China Correspondence e-mail: gingzhao888@hotmail.com

Received 16 December 2011; accepted 31 December 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.048; wR factor = 0.143; data-to-parameter ratio = 18.2.

In the title compound, $C_{17}H_{18}N_2O$, the dijedral angle between the mean planes of the pyridine and benzene rings is 78.0 (1)°. In the crystal, pairs of $C-H\cdots O$ interactions with graph-set motif $R_2^2(10)$ form inversion dimers. Adjacent dimers are further connected into a three-dimensional network by C- $H\cdots O$ connections. There is also an interaction between the carbonyl groups in adjacent molecules with an $O\cdots C$ distance of 3.176 (2) Å.

Related literature

For the synthesis of mono- and bis(imino)pyridine ligands and catalytic applications of their metal complexes, see: Schmidt *et al.* (2002); Bianchini *et al.* (2003); Britovsek *et al.* (1999); Mecking *et al.* (2001); Gibson *et al.* (2007). For graph-set analysis of hydrogen-bonded networks, see: Bernstein *et al.* (1995). For carbonyl–carbonyl interactions, see: Allen *et al.* (1998).

Experimental

Crystal data $C_{17}H_{18}N_2O$ $M_r = 266.33$

Triclinic, $P\overline{1}$ a = 6.2988 (13) Å

b = 7.9684 (16) Å	Z = 2
c = 16.009 (3)	3) Å	Mo $K\alpha$ radiation
$\alpha = 99.57$ (3))°	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 96.40(3)$)°	T = 293 K
$\gamma = 108.31$ (3)°	$0.48 \times 0.39 \times 0.21 \text{ mm}$
V = 740.6 (3)	$) Å^3$	
Data collec	ction	
Rigaku R-A	XIS RAPID	7308 measured reflections
diffractor	neter	3359 independent reflections
Absorption	correction: multi-scan	2372 reflections with $I > 2\sigma(I)$
(ABSCOI	R; Higashi, 1995)	$R_{\rm int} = 0.017$
$T_{\min} = 0.9$	65, $T_{\rm max} = 0.984$	
Refinement	ţ	
$R[F^2 > 2\sigma(F)]$	$[7^2)] = 0.048$	185 parameters
$wR(F^2) = 0.$	143	H-atom parameters constrained
S = 1.06		$\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$

Table 1

3359 reflections

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2\cdots O1^{i}$	0.93	2.64	3.459 (2)	147
$C9-H9C\cdots O1^{ii}$	0.96	2.59	3.366 (2)	138
$C9-H9C\cdotsO1^n$	0.96	2.59	3.366 (2)	138

 $\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$

Symmetry codes: (i) -x - 1, -y - 1, -z + 1; (ii) -x, -y, -z + 1.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We thank Jilin Province Science and Technology Division for financial support (grant Nos. 200505174; 20100751). We are also grateful for support by the Frontiers of Science and Interdisciplinary Innovation Project of Jilin University (grant No. 450060445023).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2044).

References

- Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bianchini, C., Mantovani, G., Meli, A., Migliacci, F., Zanobini, F., Laschi, F. & Sommazzi, A. (2003). *Eur. J. Inorg. Chem.* pp. 1620–1631.
- Britovsek, G. J. P., Gibson, V. C. & Wass, D. F. (1999). Angew. Chem. Int. Ed. 38, 428–447.
- Gibson, V. C., Redshaw, C. & Solan, G. A. (2007). Chem. Rev. 107, 1745–1776. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Mecking, S. (2001). Angew. Chem. Int. Ed. 40, 534-540.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Schmidt, R., Welch, M. B., Palackal, S. J. & Alt, H. G. (2002). J. Mol. Catal. A Chem. 179, 155–173.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2012). E68, o360 [doi:10.1107/S1600536811056327]

(E)-1-{6-[1-(2,6-Dimethylphenylimino)ethyl]pyridin-2-yl}ethanone

Q. Su and Q. Zhao

Comment

Bis(imino)pyridine iron and cobalt complexes have been well-known as catalyst precursors for olefin oligomerization and polymerization. Considerable efforts have been focused on improving catalyst performance with a view to enhancing catalytic activity and control of the microstructure of the resulting polymer. (Britovsek, *et al.*, 1999; Mecking, *et al.*, 2001; Gibson, *et al.*, 2007;) The nature of the bis(imino)pyridine ligands was found to be a crucial factor affecting the catalyst performance and it has also been shown that similar complexes of mono(imino)pyridine ligands can function as active catalysts (Bianchini *et al.*, 2003).

In the title molecule, Fig. 1, the angle between the mean planes of the pyridine and benzene rings is 78.04 (6)°. In the crystal, there exist intermolecular C2—H2···O1 interactions with the graph-set motif $R_2^2(10)$ (Bernstein *et al.*, 1995) which form a dimer (Fig.2 and Table 1). The adjacent dimers are connected into a 3-dimensional network by intermolecular C9—H9C···O1 interactions (Fig.2 and Table 1), and significant interactions between centrosymmetrically-related pairs of carbonyl groups (Allen, *et al.*, 1998) in adjacent molecules with an O1···C6ⁱⁱⁱ distance of 3.176 (2) Å and a C6=O1···C6ⁱⁱⁱ angle of 93.48 (9)° [(iii) -x, -1-y, 1-z].

Experimental

Compound (I) was prepared as described in the litererature (Schmidt *et al.*, 2002; Bianchini *et al.*, 2003) with 2,6-diacetylpyridine and 2,6-dimethylaniline as starting material. Crystals suitable for X-ray analysis were obtained by recrystallization from a petroleum ether solution at room temperature.

Refinement

The C-bound H atoms were positioned geometrically with C—H = 0.93 Å (aromatic carbon), and 0.96 (methyl) Å, and allowed to ride on their parent atoms in the riding model approximation with $U_{iso}(H) = 1.2$ (1.5 for methyl) $U_{eq}(C)$.

Figures

Fig. 1. View of the molecule of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. The molecular packing of (I). Hydrogen bonds are indicated by dashed lines.

(E)-1-{6-[1-(2,6-Dimethylphenylimino)ethyl]pyridin-2-yl}ethanone

Crystal data	
C ₁₇ H ₁₈ N ₂ O	Z = 2
$M_r = 266.33$	F(000) = 284
Triclinic, PT	$D_{\rm x} = 1.194 {\rm ~Mg~m^{-3}}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
<i>a</i> = 6.2988 (13) Å	Cell parameters from 5656 reflections
b = 7.9684 (16) Å	$\theta = 3.3 - 27.5^{\circ}$
c = 16.009 (3) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\alpha = 99.57 \ (3)^{\circ}$	T = 293 K
$\beta = 96.40 (3)^{\circ}$	Block, yellow
$\gamma = 108.31 \ (3)^{\circ}$	$0.48 \times 0.39 \times 0.21 \text{ mm}$
$V = 740.6 (3) \text{ Å}^3$	

Data collection

Rigaku R-AXIS RAPID diffractometer	3359 independent reflections
Radiation source: fine-focus sealed tube	2372 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.017$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.3^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$h = -8 \rightarrow 8$
$T_{\min} = 0.965, T_{\max} = 0.984$	$k = -10 \rightarrow 10$
7308 measured reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.143$	H-atom parameters constrained
<i>S</i> = 1.06	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.080P)^{2} + 0.0412P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3359 reflections	$(\Delta/\sigma)_{max} < 0.001$
185 parameters	$\Delta \rho_{max} = 0.26 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.13 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	-0.1379 (2)	-0.37717 (16)	0.54963 (7)	0.0681 (3)
N1	-0.01368 (18)	-0.15963 (14)	0.37828 (7)	0.0422 (3)
N2	-0.0626 (2)	0.02226 (15)	0.19274 (7)	0.0471 (3)
C1	-0.1418 (2)	-0.27314 (17)	0.42051 (9)	0.0434 (3)
C2	-0.3694 (2)	-0.37081 (19)	0.39062 (10)	0.0531 (4)
H2	-0.4536	-0.4474	0.4220	0.064*
C3	-0.4679 (3)	-0.3518 (2)	0.31350 (11)	0.0607 (4)
Н3	-0.6201	-0.4171	0.2914	0.073*
C4	-0.3396 (2)	-0.23533 (19)	0.26906 (10)	0.0524 (4)
H4	-0.4038	-0.2206	0.2168	0.063*
C5	-0.1126 (2)	-0.14023 (16)	0.30375 (8)	0.0410 (3)
C6	-0.0265 (3)	-0.28860 (19)	0.50480 (9)	0.0494 (3)
C7	0.2229 (3)	-0.1950 (2)	0.53064 (10)	0.0616 (4)
H7A	0.2725	-0.2148	0.5859	0.092*
H7B	0.2578	-0.0676	0.5338	0.092*
H7C	0.2994	-0.2421	0.4889	0.092*
C8	0.0334 (2)	-0.00400 (16)	0.26111 (8)	0.0410 (3)
C9	0.2751 (2)	0.0919 (2)	0.30375 (10)	0.0543 (4)
H9A	0.3439	0.1871	0.2753	0.081*
H9B	0.3561	0.0078	0.3003	0.081*
Н9С	0.2806	0.1426	0.3630	0.081*
C10	0.0553 (2)	0.15611 (17)	0.14995 (8)	0.0445 (3)
C11	0.0037 (2)	0.31576 (18)	0.15929 (9)	0.0496 (3)
C12	0.1034 (3)	0.4428 (2)	0.11335 (11)	0.0632 (4)
H12	0.0720	0.5502	0.1193	0.076*
C13	0.2480 (3)	0.4132 (2)	0.05903 (12)	0.0746 (5)
H13	0.3128	0.4997	0.0283	0.090*
C14	0.2970 (3)	0.2554 (3)	0.05017 (12)	0.0724 (5)
H14	0.3953	0.2366	0.0133	0.087*
C15	0.2030 (3)	0.1238 (2)	0.09492 (9)	0.0545 (4)
C16	-0.1539 (3)	0.3483 (2)	0.21889 (13)	0.0713 (5)
H16A	-0.0827	0.3648	0.2773	0.107*
H16B	-0.2920	0.2460	0.2060	0.107*
H16C	-0.1879	0.4547	0.2114	0.107*
C17	0.2582 (4)	-0.0483 (2)	0.08336 (12)	0.0711 (5)
H17A	0.2760	-0.0826	0.0249	0.107*
H17B	0.1370	-0.1427	0.0966	0.107*
H17C	0.3968	-0.0294	0.1212	0.107*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0754 (8)	0.0750 (7)	0.0612 (6)	0.0197 (6)	0.0261 (6)	0.0361 (6)
N1	0.0402 (6)	0.0407 (6)	0.0481 (6)	0.0116 (5)	0.0132 (5)	0.0164 (5)
N2	0.0446 (6)	0.0447 (6)	0.0520 (6)	0.0100 (5)	0.0094 (5)	0.0201 (5)
C1	0.0459 (7)	0.0389 (6)	0.0500 (7)	0.0144 (6)	0.0172 (6)	0.0162 (5)
C2	0.0467 (8)	0.0496 (8)	0.0653 (9)	0.0088 (6)	0.0208 (7)	0.0255 (7)
C3	0.0391 (8)	0.0600 (9)	0.0748 (10)	0.0014 (6)	0.0079 (7)	0.0239 (8)
C4	0.0440 (8)	0.0520 (8)	0.0586 (8)	0.0087 (6)	0.0061 (6)	0.0217 (7)
C5	0.0396 (7)	0.0381 (6)	0.0473 (7)	0.0121 (5)	0.0119 (5)	0.0140 (5)
C6	0.0586 (9)	0.0457 (7)	0.0500 (7)	0.0195 (6)	0.0178 (6)	0.0174 (6)
C7	0.0593 (10)	0.0645 (9)	0.0594 (9)	0.0157 (8)	0.0052 (7)	0.0225 (7)
C8	0.0399 (7)	0.0380 (6)	0.0467 (7)	0.0116 (5)	0.0121 (5)	0.0133 (5)
C9	0.0433 (8)	0.0586 (8)	0.0565 (8)	0.0048 (6)	0.0096 (6)	0.0236 (7)
C10	0.0421 (7)	0.0430 (7)	0.0462 (7)	0.0081 (6)	0.0054 (6)	0.0177 (6)
C11	0.0490 (8)	0.0449 (7)	0.0533 (8)	0.0125 (6)	0.0049 (6)	0.0155 (6)
C12	0.0712 (11)	0.0462 (8)	0.0739 (10)	0.0168 (7)	0.0091 (8)	0.0255 (7)
C13	0.0807 (13)	0.0666 (11)	0.0852 (12)	0.0158 (9)	0.0293 (10)	0.0481 (9)
C14	0.0790 (12)	0.0786 (11)	0.0771 (11)	0.0297 (10)	0.0398 (10)	0.0411 (9)
C15	0.0587 (9)	0.0548 (8)	0.0557 (8)	0.0198 (7)	0.0171 (7)	0.0221 (7)
C16	0.0746 (12)	0.0665 (10)	0.0844 (12)	0.0338 (9)	0.0261 (9)	0.0204 (9)
C17	0.0866 (13)	0.0702 (11)	0.0733 (11)	0.0400 (10)	0.0308 (9)	0.0236 (9)

Geometric parameters (Å, °)

O1—C6	1.2147 (17)	С9—Н9В	0.9600
N1—C5	1.3386 (18)	С9—Н9С	0.9600
N1—C1	1.3388 (16)	C10-C11	1.3977 (19)
N2—C8	1.2712 (17)	C10—C15	1.4022 (19)
N2—C10	1.4202 (16)	C11—C12	1.382 (2)
C1—C2	1.383 (2)	C11—C16	1.501 (2)
C1—C6	1.502 (2)	C12—C13	1.373 (3)
C2—C3	1.372 (2)	C12—H12	0.9300
С2—Н2	0.9300	C13—C14	1.375 (3)
C3—C4	1.377 (2)	С13—Н13	0.9300
С3—Н3	0.9300	C14—C15	1.384 (2)
C4—C5	1.389 (2)	C14—H14	0.9300
C4—H4	0.9300	C15—C17	1.506 (2)
C5—C8	1.4997 (17)	C16—H16A	0.9600
C6—C7	1.487 (2)	С16—Н16В	0.9600
С7—Н7А	0.9600	C16—H16C	0.9600
С7—Н7В	0.9600	C17—H17A	0.9600
С7—Н7С	0.9600	С17—Н17В	0.9600
C8—C9	1.494 (2)	С17—Н17С	0.9600
С9—Н9А	0.9600		
C5—N1—C1	117.90 (12)	Н9А—С9—Н9С	109.5

C8—N2—C10	121.37 (12)	Н9В—С9—Н9С	109.5
N1—C1—C2	123.17 (13)	C11—C10—C15	121.17 (12)
N1—C1—C6	116.46 (12)	C11—C10—N2	117.17 (12)
C2—C1—C6	120.37 (12)	C15—C10—N2	121.46 (12)
C3—C2—C1	118.35 (13)	C12-C11-C10	118.41 (14)
С3—С2—Н2	120.8	C12—C11—C16	121.22 (14)
C1—C2—H2	120.8	C10-C11-C16	120.37 (13)
C2—C3—C4	119.49 (14)	C13—C12—C11	121.19 (15)
С2—С3—Н3	120.3	C13—C12—H12	119.4
С4—С3—Н3	120.3	C11—C12—H12	119.4
C3—C4—C5	118.80 (14)	C12—C13—C14	119.88 (14)
C3—C4—H4	120.6	С12—С13—Н13	120.1
C5—C4—H4	120.6	C14—C13—H13	120.1
N1—C5—C4	122.27 (12)	C13—C14—C15	121.44 (15)
N1—C5—C8	116.15 (12)	C13—C14—H14	119.3
C4—C5—C8	121.54 (12)	C15-C14-H14	119.3
O1—C6—C7	121.86 (14)	C14—C15—C10	117.91 (14)
O1—C6—C1	119.54 (14)	C14—C15—C17	120.26 (14)
C7—C6—C1	118.60 (12)	C10—C15—C17	121.82 (13)
С6—С7—Н7А	109.5	C11—C16—H16A	109.5
С6—С7—Н7В	109.5	C11—C16—H16B	109.5
H7A—C7—H7B	109.5	H16A—C16—H16B	109.5
С6—С7—Н7С	109.5	C11—C16—H16C	109.5
H7A—C7—H7C	109.5	H16A—C16—H16C	109.5
H7B—C7—H7C	109.5	H16B—C16—H16C	109.5
N2—C8—C9	125.99 (12)	С15—С17—Н17А	109.5
N2—C8—C5	116.51 (12)	С15—С17—Н17В	109.5
C9—C8—C5	117.47 (12)	H17A—C17—H17B	109.5
С8—С9—Н9А	109.5	С15—С17—Н17С	109.5
С8—С9—Н9В	109.5	H17A—C17—H17C	109.5
Н9А—С9—Н9В	109.5	H17B—C17—H17C	109.5
С8—С9—Н9С	109.5		
C5—N1—C1—C2	0.26 (19)	N1—C5—C8—C9	1.94 (17)
C5—N1—C1—C6	-178.75 (11)	C4—C5—C8—C9	179.65 (12)
N1—C1—C2—C3	0.7 (2)	C8—N2—C10—C11	-104.44 (15)
C6—C1—C2—C3	179.71 (13)	C8—N2—C10—C15	80.74 (18)
C1—C2—C3—C4	-0.9 (2)	C15-C10-C11-C12	-0.5 (2)
C2—C3—C4—C5	0.2 (2)	N2—C10—C11—C12	-175.34 (13)
C1—N1—C5—C4	-1.06 (19)	C15-C10-C11-C16	-179.67 (15)
C1—N1—C5—C8	176.62 (10)	N2-C10-C11-C16	5.5 (2)
C3—C4—C5—N1	0.9 (2)	C10-C11-C12-C13	0.7 (2)
C3—C4—C5—C8	-176.71 (12)	C16—C11—C12—C13	179.82 (18)
N1—C1—C6—O1	173.71 (12)	C11—C12—C13—C14	-0.5 (3)
C2C1C6O1	-5.3 (2)	C12—C13—C14—C15	0.1 (3)
N1—C1—C6—C7	-6.63 (18)	C13—C14—C15—C10	0.0 (3)
C2—C1—C6—C7	174.33 (13)	C13—C14—C15—C17	179.49 (18)
C10—N2—C8—C9	-2.1 (2)	C11—C10—C15—C14	0.2 (2)
C10—N2—C8—C5	176.01 (11)	N2-C10-C15-C14	174.78 (15)
N1—C5—C8—N2	-176.33 (11)	C11—C10—C15—C17	-179.28 (15)

supplementary materials

C4—C5—C8—N2	1.38 (18)	N2-C10-C15-C17		-4.7 (2)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C2—H2···O1 ⁱ	0.93	2.64	3.459 (2)	147
C9—H9C···O1 ⁱⁱ	0.96	2.59	3.366 (2)	138
Symmetry codes: (i) – <i>x</i> –1, – <i>y</i> –1, – <i>z</i> +1;	(ii) $-x, -y, -z+1$.			

Fig. 1

